Monatshefte für Chemie 118, 627-657 (1987)

Monatshefte für Chemie Chemical Monthly © by Springer-Verlag 1987

Aromatische Spirane, 14. Mitt. [1] Darstellung von 2,2'-Spirobi-(s-hydrindacen) und seinen Vorstufen

Horst K. Neudeck

Institut für Organische Chemie, Universität Wien, A-1090 Wien, Österreich

(Eingegangen 18. April 1986. Angenommen 8. Mai 1986)

Aromatic Spiranes, XIV [1]: Syntheses of 2,2'-Spirobi-(s-hydrindacene) and its precursors

The title compound 35 was prepared by catalytic reduction of the diones 29 a and 11 a. 29 a was synthesized by systematic anellation of fivemembered rings to the positions 5,6 and 5',6', resp., of 2,2'-spirobiindane. The preparation of 11 a was achieved by *Friedel-Crafts* cyclisation of bis-(5-indanylmethyl)-malonic acid.

s-Hydrindacene-1-one 5a was prepared as a precursor for the synthesis of 11a (see forthcoming publication) and its derivates as models for corresponding anellation and substitution reactions.

(Keywords: s-Hydrindacene-1-one and derivates; Mono- and bisanellation; 2,2'-Spirobiindane; ¹H-nmr spectra)

Einleitung

Optisch aktive Derivate des 2,2'-Spirobiindans haben sich als besonders geeignete Modelle für die experimentelle Überprüfung eines Näherungsansatzes für Chiralitätsfunktionen erwiesen [1, 2]. In Weiterführung dieser Untersuchungen war es wünschenswert, die für die Chiralität maßgeblichen Substituenten näher zum Chiralitätszentrum (C-2, vergleiche Schema 2), also in Position 4 bzw. 4', zu bringen. Bei diesen Derivaten sollte die Komponente χ^5 (mit den typischen Merkmalen der optischen Drehung von Strukturen mit regulärem tetraetrischen Molekülgerüst) [2 d] gegenüber χ^3 stärker in Erscheinung treten. (Vergleiche auch die einleitenden Bemerkungen in Lit. [2 a].)

Für eine Substitution in 4- bzw. 4'-Position mußten vorerst die für eine S_E -Reaktion bevorzugten Stellen 5 und 6 bzw. 5' und 6' blockiert werden, um dann Substitution in 4 bzw. 4' zu erzwingen.

Dies wurde vorerst durch Anellierung eines 6-Ringes erreicht [2 a], um anschließend die optisch aktive 4'-Acetyl-2,2'-spirobi-(5,6,7,8-tetrahydrobenz[f]indan)-4-carbonsäure darzustellen [1].

⁴⁴ Monatshefte für Chemie, Vol. 118/5

Durch Derivatisierung dieser Säure konnten verschiedene Folgeprodukte erhalten werden, aus deren molaren Drehungen die einzelnen Ligandenparameter (λ) nach dem verkürzten Polynomansatz berechnet wurden [1].

Ein Vergleich der gefundenen molaren Drehungen mit denen aus obigen λ -Werten berechneten zeigte eine recht gute Übereinstimmung innerhalb dieser Substanzklasse. Auch ein Vergleich dieser gefundenen λ -Werte mit denen aus 5,5'-disubstituierten Spirobiindanen erhaltenen [2d] (Liganden hier frei drehbar) zeigte die erwartete Erhöhung der Beiträge bis auf zwei Ausnahmen: die Formyl- und besonders die Acetylgruppe. Hier lagen die λ -Werte deutlich unter denen der 5,5'-disubstituierten Spirobiindane, was auf eine Störung der koplanaren Einstellung der Carbonylgruppe zum aromatischen Ring schließen ließ. Diese durch den anellierten 6-Ring bedingte sterische Hinderung war aus chemischen Befunden - Verhinderung des vollständigen Abbaus zur Säure bei Reaktion von 4-Acetyl-2,3,4,5,6,7,8-hexahydro-1*H*-benz[f]indan mit NaOBr [2a] — ersichtlich. Zum anderen konnte durch ¹³C-NMR-Messungen an 5,5'-Diacetyl-6,6'-dimethyl- oder -6,6'-diethyl-2,2'-spirobiindanen gezeigt werden, daß die Acetylgruppe einen mittleren Torsionswinkel Φ von 29 bzw. 31° aufweist [3]. Um diesen konformativen Einfluß des anellierten 6-Rings zu verringern, wurde das homologe 5-Ring-Spirobiindan dargestellt.

In dieser Mitteilung soll vorerst über die Synthese des Grundkörpers [2,2'-Spirobi-(*s*-hydrindacen)] berichtet werden.

Ergebnisse und Diskussion

Darstellung von s-Hydrindacen-1-on und Modellversuche (Schema 1)

Dieser Grundkörper **5** a wurde als Ausgangsbasis für die gewünschte Spiro-Verbindung **35** dargestellt (siehe eine folgende Mitteilung). Für seine Synthese boten sich verschiedene Methoden an. Die beiden ersten lieferten die Indanpropansäure **3** a, die anschließend zu **5** cyclisiert wurde. Terephthalaldehyd **1** a wurde mit Malonsäure zu **1** b umgesetzt. Dessen Methylester **1** c — Umsetzung des Säurechlorids mit Methanol — wurde mit Pd/C reduziert. Die durch Verseifung mit KOH erhaltene Dipropansäure **1** e konnte mit H₂SO₄ (conc.) oder *PPS* mit einer Ausbeute von 54 bzw. 65% zum Indanon **2** a cyclisiert werden. Auch der Ester **1** d führte nach gleicher Behandlung zum Cyclisierungsprodukt **2** b mit Ausbeuten von 55% bzw. 88%. Nachfolgende Hydrierung mit Pd/C bei einem Druck von 4—5 atm lieferte die gewünschte Propansäure **3** a bzw. den Ester **3** b.

Diese ließ sich auch ausgehend vom Indan 4a darstellen. 4a wurde mit (CH₃CO)₂O unter AlCl₃-Katalyse in verschiedenen Lösungsmitteln (1,2-

Dichlorethan, Nitrobenzol, CS_2 und CH_2Cl_2) umgesetzt. Nach Aufarbeitung wurde die Ausbeute und das Isomerenverhältnis bestimmt. Das unerwünschte 4-Isomere von **4b** war hierbei nur zu 2—4% enthalten. Im Hauptversuch wurde CH_2Cl_2 verwendet. Die Ausbeute an Isomerengemisch **4b** betrug dabei 93%. Die Carbonsäure **4d** konnte durch Haloformabbau von **4b** zu 89% bzw. über das Pyridiniumsalz **4c** zu 79% erhalten werden. Nachfolgender Umsatz mit Methanol und H_2SO_4 lieferte zu 94% den Methylester **4e**, der mit LiAlH₄ zum Alkohol **4f** (94% Ausb.) reduziert wurde. Dieser konnte einerseits zum Chlormethylindan **4i** zu 95%, andererseits durch Oxidation mit *PCC* in CH_2Cl_2 zum Aldehyd **4h** zu 96% umgewandelt werden. Letzterer wurde in die Acrylsäure **4j** überführt (Ausb. 91%) und anschließend katalytisch zu **3a** hydriert.

Cyclisierung mit *PPS* lieferte zu 93% das Isomerengemisch von 5. Eine gaschromatographische Analyse zeigte ein Isomerenverhältnis 5a:5b von 80: 20% (vgl. Lit. [4]). Die Cyclisierung des Säurechlorids von 3a mit SnCl₄ erbrachte nur 68% Ausbeute. Das Isomerengemisch ließ sich durch dreimaliges Kristallisieren aus Petrolether reinigen, womit das gewünschte "lineare" Keton 5a zu ca. 50% erhalten werden konnte, und auch eine Trennung mittels Mitteldruckchromatographie ließ sich leicht durchführen. 5a konnte auch in einer zweistufigen Synthese dargestellt werden.

Friedel-Crafts-Reaktion von Indan **4a** mit β -Chlor- bzw. β -Brompropionsäurechlorid lieferte das Keton **6a** bzw. **6b** mit 77 bzw. 90%. Eine Cyclisierung zum Isomerengemisch **5a** und **5c** konnte durch Einwirken von überschüssigem AlCl₃ selbst bei erhöhter Temperatur nicht erzielt werden. Erst konz. H₂SO₄ (siehe Lit. [5]) bei 70° und einer Reaktionszeit von 3 Stunden lieferte aus **6a** das Isomerengemisch **5a/5c** zu 86%, während sich bei analoger Reaktion an **6b** nur 33% der Verbindung **7** isolieren ließ.

Verzichtete man auf die Isolierung von **6a** und setzte das Rohprodukt der *Friedel-Crafts*-Reaktion nach Entfernen des Lösungsmittels direkt mit H_2SO_4 um, so sank die Ausbeute am Ketongemisch **5 a/5 c** auf 64%. Die Isolierung von **5 a** ließ sich nur durch oftmaliges Kristallisieren aus Petrolether erreichen (Gesamtausb. bezogen auf die zweistufige Synthese 34%). Die Mutterlaugen mußten verworfen werden, da sie sich selbst mittels Mitteldruckchromatographie sehr schlecht und nur in kleinem Umfang auftrennen ließen.

5 a wurde durch katalytische Hydrierung mit Pd/C bei erhöhtem Druck zum *s*-Hydrindacen **8 a** reduziert, um anschließend nach *Friedel*-*Crafts* mit CH₃COCl zu **8 b** umgesetzt zu werden (89% Ausb.).

Im Gegensatz zum homologen 4-Acetyl-2,3,4,5,6,7,8-hexahydro-1Hbenz[f]indan — hier konnte nur die Dibromverbindung isoliert werden (vgl. [2a]) — lieferte der Haloformabbau mit NaOBr zu 82% die erwartete Säure 8c, allerdings nur im mmol-Maßstab.

Bei größeren Ansätzen (0.1 mol) konnte kein quantitativer Abbau erzielt werden; es wurden maximal 46% an **8** c isoliert. Deshalb wurde die Acetylverbindung **8b** mit SeO₂ zum Glyoxal bzw. seinem Semiacetal **8** e oxidiert und dieses anschließend mit $H_2O_2/NaOH$ zur Säure **8** c mit 74% Ausbeute gespalten und als Methylester **8 d** isoliert. Das **4** c entsprechende Pyridiniumsalz **8 f** konnte zwar in sehr guten Ausbeuten (93%) zur Säure **8 c** bzw. nach Behandeln mit CH₂N₂ zum Ester **8 d** umgewandelt werden, bildete sich aber aus **8b** nur zu 37%, so daß nach zusätzlicher Aufarbeitung der angefallenen Mutterlaugen ein Gesamtumsatz von nur 44% erzielt werden konnte. Der Ester **8 d** ließ sich mit LiAlH₄ in Diethylether fast quantitativ zum Alkohol **8 i** reduzieren. Durch Umsetzung von **8 a** mit Dichlormethyl-methyl-ether wurde mit einer Ausbeute von 79% der Aldehyd **8 g** dargestellt, welcher zur Charakterisierung ins Oxim **8 h** umgewandelt wurde (Ausb. an sterisch einheitlichem Produkt 75%).

Darstellung von 2,2-Spirobi-s-hydrindacen und dessen Vorstufen

In Analogie zur Darstellung von 2,2-Spirobiindan-1,1-dion aus Dibenzylmalonsäure [2b] wurde versucht, auch die entsprechende 5-Ringanellierte Spiroverbindung, das 2,2'-Spirobi-(*s*-hydrindacen)-1,1'-dion (**11 a**), darzustellen.

630

Der zu 75% durch Einwirken von Natriumethylat auf eine Mischung von 5-Chlormethylindan 4i und Malonsäurediethylester entstandene Diester 9c wurde mit KOH verseift. Es konnten jedoch nur ca. 28% der gewünschten Malonsäure 9a isoliert werden, wogegen das Decarboxylierungsprodukt 10a zu 50% anfiel.

Zur Charakterisierung wurden von beiden Säuren die Methylester 9b und 10b dargestellt. Die Cyclisierung des Säurechlorids von 9a mit FeCl₃ ergab ein Gemisch der isomeren Ketone 11a—c mit einer Ausbeute von 45%. Erwartungsgemäß war die Selektivität zugunsten des gewünschten Diketons 11a mit 60% am höchsten. Die Anteile der anderen Isomeren betrugen 30% für 11b und 10% für 11c. Die Strukturzuordnung erfolgte durch ¹H-NMR-Spektroskopie.

631

632 H. K. Neudeck: Darstellung von 2,2'-Spirobi-(s-hydrindacen)

Im Reaktionsgemisch lag außerdem noch das "1-Chlorinden"-Derivat 12 zu 19% vor (siehe Schema 2).

Für größere Ansätze erwies sich die chromatographische Trennung der Isomeren 11 a—c als problematisch, so daß nach einer anderen Darstellungsmethode für den Grundkörper 2,2-Spirobi-(*s*-hydrindacen) (35) gesucht wurde.

Es wurde auch der Versuch unternommen, den Malonester 9c in den Halbester 9d zu überführen, um ihn dann stufenweise zu cyclisieren. Bei 5stündigem Einwirken von 1 equiv. KOH entstand der gewünschte Ester 9d nur zu 9%, wobei 90% 9c rückgewonnen werden konnten. Längeres Erhitzen führte zu keiner Ausbeutesteigerung, sondern lieferte z. T. die Decarboxylierungsprodukte 10a und 10c.

Um die bei der Darstellung von 9a bzw. 9d in größerer Menge angefallene Säure 10a nutzbringend zu verwenden, wurde sie zum Keton 13 cyclisiert. Die Reaktion mit Polyphosphorsäure (*PPS*) lieferte ein schwer zu analysierendes Produktgemisch, wogegen die Reaktion des Säurechlorids mit SnCl₄95% Umsatz erbrachte. Die beiden Isomeren 13aund 13b verhielten sich wie 3:1. 13a ließ sich durch Kristallisation aus Petrolether rein erhalten.

Isomerenfrei und mit einer Gesamtausbeute von 87% konnte 13a durch Aldolkondensation von 5a mit 4h zu 14 und nachfolgender katalytischer Hydrierung erhalten werden (siehe Schema 2).

Durch Einführung geeigneter Substituenten (siehe Schema 3) in 13 a sollten sich Vorstufen für die Spirocyclisierung gewinnen lassen. Für *Friedel-Crafts*-Reaktionen sind zwar die Positionen 6 und 7 aktiviert, dabei ist allerdings nur die 6-substituierte Verbindung zur Cyclisierung befähigt, so daß nach erfolgter Reaktion eine Trennung möglich sein sollte.

Acetylierung von 13 a

Die Friedel-Crafts-Acetylierung wurde mit Acetanhydrid und vorzugsweise mit Acetylchlorid unter AlCl₃-Katalyse durchgeführt. Nicht nur die Ausbeute, sondern auch die Zusammensetzung des Reaktionsproduktes war stark abhängig vom Verhältnis Reagenz zu Katalysator und Substrat. Das immer im Unterschuß gebildete Isomere 15a cyclisierte in manchen Fällen direkt während der Reaktion zu 16, quantitativ jedenfalls bei der Destillation oder durch Behandeln mit *p*-Toluolsulfonsäure in siedendem Benzol. Die so erhaltenen Komponenten 16 und 15b konnten durch Kristallisation oder Chromatographie getrennt werden. Hinsichtlich der Produktzusammensetzung vgl. Tabelle 1.

		13717 11 AUCON	Juci ang ron 2-2-	-Tikussunkummur-		(BCT) 10-1-	a series de la constante de la c
Je mol I Reagens ^a	l 13 a mol AlCl ₃	Reaktions- zeit (h)	Reaktions- bedingungen	Gesamt- ausbeute (%)	Produktzus 15 a + b	ammensetzung (%) 15 b 16	Analysenmethode
5a)	Э	15 + 8	Raumtemp. erwärmen	00			Dünnschichtchrom.
3a)	5	15	Raumtemp. ^b	96 94	80	20 64 36	NMR NMR
2.5 b)	1.5	15 + 8	Raumtemp. erwärmen	33	100		NMR
3.5 b)	2.5	5 18	Raumtemp. Raumtemp. ^c	99 94 84	100 83	57 43	NMR NMR NMR
5 b)	ŝ	15	Raumtemp. ^d	96 96	66	70 30	präparative Schichtchrom.
5 b)	4	18	Raumtemp.	98		54 46	NMR
a) (CH ₃ CO)20, b) CH3C			1	Ę	: - -	

Tahelle 1. Acetvlierung von 2.-15.-Indanvlmethvll-s-hvdrindgen-1-on (13a)

^b Aufarbeitung normal; anschließende Kugelrohrdestillation unter Zusatz einer Spur *p*-Toluolsulfonsäure
^c Nach Kugelrohrdestillation
^d Nach Aufarbeitung 2 h Erhitzen mit *p*-Toluolsulfonsäure in Benzol am Wasserabscheider

Zur eindeutigen Zuordnung der beiden Isomeren 15a und 15b durch ¹H-NMR-Analyse wurden die entsprechenden Carbonsäuren bzw. ihre Methylester 19 und 20 dargestellt und in weiterer Folge die Verbindungen 21 und 22. Die Verbindung 19a, die wegen der schwierigen Isolierung der Acetylverbindung 15a aus dieser durch Haloformabbau nicht zugänglich war, wurde durch Ringöffnung des mittlerweilen dargestellten Diketons 11a mittels NaOH zu 95% erhalten. Beim Destillieren im Kugelrohr cyclisierte sie wieder fast vollständig zum Ausgangsmaterial. Selbst ihr Methylester 20a lieferte beim Destillieren zu 25% 11a.

Unterzog man das leicht zu isolierende isomere Keton **15b** einem Haloformabbau, so hing die Produktzusammensetzung stark von der Menge an NaOBr und der Reaktionszeit ab. Selbst bei stöchiometrischem Einsatz an NaOBr und einer Reaktionszeit von 1 Stunde bildete sich neben dem gewünschten Produkt **19b** (38%) auch schon zu 20% das 2-Brom-Produkt **24a**. Nach Überführung in den Methylester **24b** konnte dieser durch kurze katalytische Hydrierung mit Pd/C in **20b** umgewandelt werden. Bei Verdopplung des Oxidationsmittels konnten nach 4stündiger Reaktion 58% **19b** isoliert werden.

Längere Einwirkungen brachten zu 62% das Na-Salz von 25 a, welches aus 24 a durch HBr-Abspaltung im alkalischen Milieu entstanden war. Eine derartige Eliminierung beobachtete man auch beim Destillieren von 24 b unter Bildung von 25 b, wodurch dessen Struktur eindeutig bewiesen war. Eine 1stündige katalytische Hydrierung in Dioxan lieferte wieder reines 20 b.

Eine weitere Verdoppelung an NaOBr führte zur Epoxidierung von 25 a unter Bildung von 44% der Verbindung 26 a und schließlich zur oxidativen Spaltung unter Ausbildung von 33% an 27 a.

Jod in Pyridin [6] lieferte nach entsprechender Aufarbeitung nur zu ca. 10% den Methylester **20 b**. Ein Vergleichsversuch an **13 a** zeigte, daß nach Kugelrohrdestillation des Reaktionsproduktes zu 51% Verbindung **14** entstand, was auf eine ursprüngliche Jodierung in 2-Stellung zur Carbonylgruppe schließen ließ.

Formulierung von 13 a

13 a wurde mit Dichlormethyl-methyl-ether unter $TiCl_4$ -Katalyse formyliert. Nach Aufarbeitung zeigte eine NMR-Analyse folgende Produktzusammensetzung: 67% 17 a, 16% 17 b und cyclisiertes Produkt 18 zu 16%.

Da sich die Isomeren 17 durch Chromatographie nicht trennen ließen, wurde das Reaktionsgemisch 2 Stunden bei ca. 120° im Hochvakuum gehalten, wobei 17 a zu 18 cyclisierte. Durch Chromatographie des Reaktionsproduktes konnten rund 40% an 18 erhalten werden. Zwecks Absicherung der Struktur wurde der Ketoalkohol 18 mit LiAlH₄ in *THF* reduziert und mit dem durch analoge Reaktion von 11 a erhaltenen Produkt 23 verglichen. Verzichtete man auf die Isolierung von 18 und oxidierte das Rohprodukt der Formylierungsreaktion mit aktiviertem Braunstein, so konnten nach Kugelrohrdestillation 40% an 11 a erhalten werden. Ferner wurde zwecks Analyse der isomere Aldehyd 17 b aus dem Destillat durch Chromatographie isoliert.

Umsetzung von 13 a mit Oxalylchlorid

Die Ketoverbindung 13a wurde mit überschüssigem Oxalylchlorid nach *Friedel-Crafts* umgesetzt. Das zu 92% angefallene Säuregemisch 19a und 19b wurde nicht getrennt, sondern im Kugelrohr destilliert, wobei die Säure 19a quantitativ zur Spiroverbindung 11a cyclisierte. Aus H.K. Neudeck:

der Analyse des Destillates konnte auf die ursprüngliche Zusammensetzung des Säuregemisches rückgeschlossen werden. Es waren 70% **19 b** und 30% **19 a** enthalten.

Bei analoger Umsetzung mit Oxalsäuremonoethylesterchlorid wurde 13 a zu 80% rückerhalten.

Darstellung von 2,2'-Spirobi-(s-hydrindacen)-5,5'-dion (29 a) (Schema 5)

Da die vorhergehenden Methoden zur Synthese des gewünschten Grundkörpers [2,2'-Spirobi-(s-hydrindacen), **35**] nicht befriedigend waren, wurde daran gedacht, den 5-Ring an vorgegebenes 2,2'-Spirobiindan [2 b] zu anellieren. (Vgl. hiezu die Darstellung von 2,2'-Spirobi-(5,6,7,8-tetrahydrobenzo[f]indan) [2 a].)

Ausgehend vom Dialdehyd 28 a [2b] wurde durch Knoevenagel-Doebner-Reaktion die entsprechende Propensäure 28 b mit 95% dargestellt. Nach Veresterung mit CH_2N_2 erhielt man durch Kristallisation den Ester **28 c** zu 90%, der sich glatt durch katalytische Hydrierung in Dioxan mit Pd/C in den Propansäuremethylester **28 d** umwandeln ließ. Verseifung mit NaOH lieferte die Disäure **28 e** zu 93%.

Wie aus Vorversuchen am Indan ersichtlich ist [hier erfolgte die Zyklisierung der 3-(5-Indanyl)-propansäure 3 a zu 80% in die gewünschte 6-Stellung], sollte der Ringschluß des Spiroanalogen ungefähr die gleichen Verhältnisse zeigen, so daß mit ca. 60% an gewünschtem 29 a zu rechnen war. 28 e wurde mit *PPS* zyklisiert

Schema 5

und lieferte nach Aufarbeitung und Destillation zu 94% ein Isomerengemisch an 29.

29 a ließ sich durch Kristallisation nicht rein gewinnen, auch eine Trennung mittels Mitteldruckchromatographie war nicht zielführend, so daß sich für eine Analyse der einzelnen Komponenten nur präparative Schichtchromatographie anbot. Das Isomerenverhältnis wurde durch Kapillargaschromatographie bestimmt: **29 a** ~ 59%, **29 b** ~ 38% und **29 c** ~ 3%. **29 a** konnte durch Hydrierung mit Pd/C in den Grundkörper **35** umgewandelt werden.

Aufgrund der schwierigen Trennung des Isomerengemisches von **29** wurde daran gedacht, zunächst nur einen 5-Ring zu anellieren, die beiden Isomere zu trennen und dann den zweiten 5-Ring aufzubringen.

Darstellung von Spiro-(s-hydrindacen-2,2'-indan)-5-on (31 a)

Dazu wurde der Aldehyd **30 a** nach obigen Methoden derivatisiert und lieferte 97% **30 b** und nach Hydrierung fast quantitativ **30 e**. Letzteres wurde wieder mit *PPS* nahezu quantitativ zum Gemisch der cyclischen Ketone **31** cyclisiert, wobei **31 a** zu 77% im Produktgemisch enthalten war. Auch die Cyclisierung von **30 e** über ihr Säurechlorid mit SnCl₄ brachte analoge Ergebnisse. Das Isomere **31 a** ließ sich durch fraktionierte Kristallisation rein gewinnen, allerdings unter relativ hohen Verlusten.

31 a wurde zwar mit einer Ausbeute von 81% zur Verbindung 32 acetyliert, aber die Folgereaktionen nicht weitergeführt, da nachfolgender Haloformabbau auch zu einer Bromierung in α -Stellung zum Carbonyl führen sollte. (Vgl. Haloformabbau von 15b.) Deshalb wurde 31 a mit sehr guten Ausbeuten zum Kohlenwasserstoff 33 reduziert, um eventuell durch nachfolgende *Friedel-Crafts*-Acetylierung die Verbindung 34b weiter zum cyclischen Keton zu derivatisieren. Beim durch Umsetzung von 33 mit Acetanhydrid erhaltenen Isomerengemisch (89% Ausb.) überwog allerdings 34 a zu 56%, so daß diese Darstellungsmethode nicht weiter verfolgt wurde.

Dank

Dem Fonds zur Förderung der wissenschaftlichen Forschung danke ich bestens für die Unterstützung dieser Arbeit im Rahmen des Projektes 40009, Herrn Dr. *W. Silhan* für die Aufnahme der NMR-Spektren und Herrn Dr. *A. Werner* für nützliche Hinweise bei der MPLC-Chromatographie.

Experimenteller Teil

Schmelzpunkte (unkorr.): Kofler-Heiztischmikroskop mit Thermometerablesung. ¹H-NMR: Varian EM-360 und Bruker WM-250 in CDCl₃ (mit TMS als innerem Standard). Massenspektren: Varian Mat-CH-7. Säulenchromatographie: bei 2.4 bar (30 ml/min) an Kieselgel 60 (Merck) bzw. Merckliquoprep.; Korngröße 40-63 bzw. 20-40 µm. Präparative Schichtchromatographie an $Al_2O_3 80$, Akt. Stufe II—III; 0.063—0.20 mm (Merck). Dünnschichtchromatographie: DC-Karten Kieselgel 60 F-254 (Merck). Die NMR-Daten sind in den Tabellen 2—4 zusammengefaßt. Die für die Darstellung dieser Substanzen erforderlichen Methoden wurden zum Teil schon früher beschrieben [2].

3-(Indan-1-on-6-yl)-propansäure (2 a) $C_{12}H_{12}O_3$ (204,2)

Methode nach Lit. [7].

l g 1 e wurde in 5 ml konz. H_2SO_4 bei 140 °C eingetragen und 5 min bei 160° belassen. Nach Gießen auf Eiswasser wurde der Niederschlag abfiltriert.

Ausbeute: 54% (bei Reaktion in H_2SO_4 bei Raumtemperatur und 3tägigem Stehen erfolgte kein Umsatz. Dreistündiges Erwärmen auf 60° brachte nur geringfügige Cyclisierung). Fp.: 146–148° (Benzol).

Methode mit *PPS*: Reaktionszeit 5 h bei 100° ; Ausbeute 57%. Reaktionszeit 4 h bei 90° ; Ausbeute 65%.

Methyl-3-(indan-1-on-6-yl)-propionat (2 b) $C_{13}H_{14}O_3$ (218.3)

Darstellung aus 1d (Fp. 118—119°) analog Synthese von 2a. Schwefelsäuremethode: 1 min bei 160°; Ausbeute 55%. *PPS*-Methode: 6 h bei 80°; Ausbeute: 88%; Fp.: 68—69 (PE).

5-Acetylindan (**4 b**) $C_{11}H_{12}O$ (160.2)

Zu 427 g (3.2 mol) AlCl₃ in 500 ml trockenem CH_2Cl_2 wurde unter Rühren 184 g (1.8 mol) Acetanhydrid so zugetropft, daß die Temperatur im Kolben unter der Siedetemperatur des CH_2Cl_2 lag. Nach Bildung des Komplexes wurden 177 g (1.5 mol) Indan langsam zugegeben. Nach 4h wurde in der üblichen Weise aufgearbeitet.

Kp₁₀: 132° (Kp₂₅: 162–165°) [8]; Ausbeute 93%.

5-Indancarbonsäure (**4 d**) $C_{10}H_{10}O_2$ (162.2)

wurde dargestellt durch Einwirken von 3 mol NaOBr auf 1 mol 4b. Nach 3 h Reaktion bei 0° und weiterem Rühren über Nacht bei Raumtemperatur wurde aufgearbeitet. Die Reinigung der angefallenen Säure erfolgte durch Sublimation (ca. 140° bei 0.1 mm). Ausb.: 89%; Fp.: 181–183° (183–185°) [8]; MS (m/e): 162 (30.7%, M^+), 117 (100%, C₉H₉).

Der Abbau von **4b** ließ sich auch nach Arnold [9] über das Pyridiniumiodid **4c** durchführen.

Ausb. an 4c 67%; Fp.: 218–220° (CH₃OH/H₂O).

Dieses ließ sich durch Kochen in wäßriger NaOH zu 98% in 4d umwandeln. Aus dem Filtrat und der Mutterlauge von 4c ließ sich durch analoges Aufarbeiten noch weitere Säure gewinnen, so daß insgesamt 79% 4d aus 4b erhalten wurde.

5-Indancarbonsäuremethylester (4e) $C_{11}H_{12}O_2$ (176.2)

146 g (0.9 mol) Säure 4d wurden mit 110 ml absol. CH₃OH unter Zusatz von 10 ml konz. H₂SO₄ unter wasserfreien Bedingungen über Nacht am Rückfluß erhitzt. Nach dem Abkühlen wurde mit Wasser verdünnt und das Produkt mit Ether extrahiert.

Kp.₁₂: 137° (Kp.₁₀: 128–131°) [10]; Fp.: 27° (27°) [10]; Ausb.: 94%.

Nr. H-1° H-3° H-2^d H-4^a H-5 H-6^b H-7^b 7.47^b 2 a 3.02 2.70° 7.41^b 7.61^a 3.02 2.67° 7.41^b 7.48^b 7.59^a 2 b 3a 2.87 2.06 7.08 6.98 7.15 3 b 2.88 2.06 7.07 6.97 7.14 2.94 7.29 4 b 2.117.81 7.75 4 d 7.31 2.972.13 7.97 7.92 $4e^k$ 2.91 2.077.91 7.87 7.27 7.20 4f2.90 2.07 7.23 7.11 7.23 7.13 7.22 4 g 2.92 2.08 $4\bar{\mathbf{h}}^k$ 2.97 7.70 7.67 7.34 2.12____ 2.902.07 7.26 7.14 7.21 4i 7.33 7.24 2.93 2.107.44 4 j 7.30 7.23 4 k 2.92 2.10 7.40 2.93° 2.13^d 2.97° 5 a 3.06° 2.68^e 7.28 7.23^b 2.92° 2.12^d 5 b 3.09° 2.64^e 7.41^b 3.00^e 2.18^d 2.70^e 3.00° 2.92° 7.26 5c 2.96 2.12 7.83 7.76 7.30 6 a 2.97 2.12 7.84 7.76 7.32 6 b $4.66^{\,\mathrm{f}}$ 7.27 2.95° 2.15^d 2.99° 3.78 u. 7 3.37^g 2.92 7.09 2.92° 2.06^d 2.92° 2.06 8 a 2.08^d 2.88° 8 b 2.88 3.02 2.083.02° 3.27° 2.09^d 2.89° 2.89 3.27 2.09 8 c 2.86 3.15 2.06 3.15° 2.06^d 2.86° 8 d h i h 2.88 i 2.88° 8 e 3.23° 2.13^d 2.87° 2.87 3.23 2.13 8g 2.11^d 3.01° 2.89° 8 h 2.89 3.01 2.112.91° 2.07^d 2.86° 2.86 2.91 2.07 8i ____ 2.83/2.79 1.99 7.10 7.00 7.07 9 a 7.13 9b 2.882.06 7.03 6.92 2.86 7.03 6.95 7.12 2.05 9 c 6.92 7.15 9 d ^k 2.872.05 7.06 10 a 2.86 2.04 7.03 6.93 7.11 6.91 7.11 10 b 2.86 2.05 7.01 6.92 10 ck 2.90 2.10 7.05 7.13

Tabelle 2. ¹H-NMR-Spektren von Indan-

^a Singulett

^b Dublett, J = 8 Hz

° Triplett, $J = 8 \,\mathrm{Hz}$

^d Quintett, J = 8 Hz

^e Triplett, J = 6 Hz

^f Dublettiertes Dublett, J = 8 und 3 Hz

H-8^j SonstigeH

9.33 (s, breit; —COOH), 3.11 (t, J = 6 Hz; ArCH₂—), 2.70 (t, J = 6 Hz; ---CH₂---) 3.68 (s; --COOCH₃), 3.12 (t, J = 6 Hz; ArCH₂---), 2.69 (t, $J = 6 \text{ Hz}; --CH_2$ -----) 10.46 (s, breit; —COOH), 2.93 (t, J = 8 Hz; ArCH₂—), 2.67 (t, $J = 8 \text{ Hz}; -CH_2$ -) 3.68 (s; $-COOCH_3$), 2.92 (t, J = 8 Hz; $ArCH_2$), 2.62 (t, $J = 8 \text{ Hz}; -CH_2$) 2.41 (s; $-COCH_3$) 11.51 (s, breit; ---COOH) 3.88 (s; --COOCH₃) 4.62 (s; $-CH_2O-$), 1.89 (s, D₂O-austauschbar; -OH) 5.07 (s; ArCH₂O—), 2.10 (s; -OCOCH₃) 9.90 (s; ---CHO) ____ 4.57 (s; --CH₂Cl) 11.18 (s, breit; --COOH), 7.81 (d, J = 16 Hz, ArCH =), 6.41 (d, J = 16 Hz; =CHCO—) 7.69 (d, J = 16 Hz; ArCH =), 6.40 (d, J = 16 Hz; = CHCO—), $3.80 (s, -COOCH_3)$ 7.56ª 3.21° 7.58^b 3.92 (t, J = 7 Hz; --COCH₂---), 3.43 (t, J = 7 Hz; CH₂Cl) ___ 3.91 (t, J = 7 Hz; --COCH₂---), 3.55 (t, J = 7 Hz; CH₂Br) 7.66ª 7.09ª 7.20^a 2.52 (s; $-COCH_3$) 7.29^a 12.04 (s, breit; ---COOH) 7.23^a 3.88 (s; ---COOCH₃) 7.28^a 5.48 (s; -CH-), 3.49 (s; $-OCH_3$) 7.31^a 10.37 (s; ---CHO) 8.39 (s; -CH =), ca. 8.30 (s, sehr breit; -OH) 4.61 (s; $-CH_2O-$), 1.78 (s, breit, D₂O aust.; -OH) 7.13^a 7.06^a 10.07 (s, breit; ---COOH), 3.43 (s; ArCH₂---) 3.66 (s, --COOCH₃), 3.19 (s; ArCH₂---) 4.12 (qu., $-OCH_2$), 3.19 (s; $ArCH_2$), 1.18 (t; $-CH_3$) 10.70 (s, breit; $-\bar{C}OOH$), 4.23 (qu.; $-OCH_2$ ---), 3.57 u. 3.18 (AB, J = 14 Hz; ArCH₂---), 1.37 (t; ---CH₃) 10.99 (s, breit; —COOH)^k, 2.95 u. 2.77 (AB, J = 8 Hz; $ArCH_2$ —), 3.03—2.70 (m; —CH) 3.52 (s; --COOCH₃), 2.94 u. 2.75 (AB, J = 8 Hz; ArCH₂), 3.00-2.70 (m; ---CH) 4.00 (qu., J = 7 Hz; --OCH₂--), 1.02 (t, J = 7 Hz; --CH₂), 3.08-2.58 (m; 2-CH₂; --CH) ^g AB, J = 17 und 8 Hz bzw. 17 und 3 Hz ^h Multiplett, 3.26 bis 3.08 und 3.03 bis 2.94

- Multiplett, 2.21 bis 1.97
- ^j Für H-1 bis H-8 siehe die Bezifferung bei den Formeln 2 bis 10
- ^k 60 MHz-Spektrum

H.K. Neudeck:

Nr.	H-1ª	<i>H-1</i> ′ ª	H-3 ^f	H-3'f	H-4	H-4′	H-5	H-5′	H-6	H-6'
11.0			2 62	2.00			2.0	01 b		120
114		_	3.05 u	1. 3.09	7 109	7 47d	2.5 2.02h	7 20d	2.126	13" - 2 0 2 h
110		_	3.62 u 3.70 u	1. 3.09	7.38"	/.4/°	2.93°	7.30 ^a	2.15	2.92°
11 c	_	_	3.67 1	3 13	7 /	18 d	7 3	27d	20)1 ^b
16			2.51 u	3.00	7 2 2 a	7 168	2.5	20e	2.	00
10	_		3.37 u	i. 3.00	1.55	7.10	2.0) <i>7</i>	4.1	10
18		5.54	3.68 1	2.77	7.26ª	7.05^{a}	2.9	90e	2.11°	2.09°
10		5.51	3 31 1	2.71	/.20	1.00	2.9		2.11	2.07
22	5 51 1	4.02	2.57 1	2.71	714	7 004	2 0	one	2.1	100
23	5.51 u. 4.92		3.37 u	. 2.45	/.17 u. /.00		2.0	59	4.	10
•••	2.00		2.74 u. 2.02		7 374					
28 c	2.99		2.9	19ª	7	37ª	-		7	34 ^u
28 d	2.	93	2.93ª		7.0	7.03ª		_	6.98 ^d	
29 a	3.0	01	3.05ª		7.57 ^a			_	2.7	71 ^g
29 h	3.00	2.96	3.03ª	3.31ª	7.54ª			2.67 ^g	2.70 ^g	3.09 ^g
30 9	3.03	2.98	3 03ª	2.98^{a}	7.72^{a}	7 18°		7 18°	7 69 ^d	7 18°
30 L	3.00	2.90	2.00ª	2.90 2.08a	7 / 1 a	7 1 9 0		7 18¢	7.36d	7.18e
30.0	3.00	2.90	3.00	2.90	7.41	/.10		7.10	7.50	7.10
30 c	2.	98	2.9	8ª	7.38ª	7.18 ^e		7.18°	7.33 ^d	7.18 ^e
30 d	2.93	2.97	2.93ª	2.97ª	7.03ª	7.16 ^e	_	7.16°	6.99 ^d	7.16°
30.0	2.93	2.97	2 93ª	2 97ª	7 04ª	7 17°		7 17°	6 99 ^d	7 17°
500	2.75	2.77	2.75	2.71	/.04	/.1/		/.1/	0.77	1.11
31 a	2.99	2.97	3.01ª	2.97ª	7.57ª	7.18°		7.18°	2.70 ^g	7.18°
31 h	2.95	2.99	3.31ª	2.99ª		7.17 ^e	2.67 ^g	7.17°	3.13 ^g	7.17°
32	3	03	3.0	3ª	7.57^{a}	7.82ª			2.70 ^g	7.80 ^d
33	2 93	2 97	2 93ª	2 97ª	7 05ª	7 1 5°	2 87 ^b	7 15°	2 07°	7 15°
34 a ⁱ	2.00	2.00	3 10ª	2 00 a	7.00	7 10ª	2 895	7 19a	2120	7 19a
5та 24 b	2.72	3.02	2 01a	2.99 3.02ª	7.06a	7 702	2.05 2.86b	1.17	2.12	7 77d
340 25	2.71	02	2.71	5.02	7.00	1.17 15a	2.80° —		2.00 1 /	1.11 170
33	Ζ.	72	2.5	Z.	7.0	55	2.0) /	2.0	<i></i>

Tabelle 3. ¹H-NMR-Spektren von substituierten 2,2'-Spirobiindanen und

^a Singulett

^b Triplett, J = 8 Hz

^c Quintett, J = 8 Hz

^d Dublett, J = 8 Hz

^e Multiplett zentriert

5-Hydroxymethyl-indan (4 f) $C_{10}H_{12}O$ (148.2)

Der Ester 4e wurde mit überschüssigem LiAlH₄ (1 Equiv.) in Ether durch Erhitzen am Rückfluß (12 h) zu 4f reduziert.

Ausb.: 94%; Fp.: 73° (PE) (73—75°) [11]; Kp.₁₀: ~ 130° (Kugelrohr); MS (m/e): 148 (66.3%, M^+), 130 (92.8, M-H₂O), 117 (80.6, C₉H₉⁺), 115 (69, C₉H₇⁺), 91 (100, C₇H₇⁺).

H-7	H-7′	H-8	H-8 ′ ^h	Sonstige H
2.9 2.99 ^b	2.15°	7.5 7.59ª	56 ^a 3.18 ^b	
2.1 2.9	3° 996	3.1 7.64ª	7 ^b 7.33 ^a	5.32 u. 4.54 (s; $=$ CH ₂)
2.9)0e	7.55ª	7.22ª	ca. 2.90 (—OH)
2.8	39e	7.30 u	ı. 7.27ª	1.75 u. 1.59 (s, breit, D ₂ O-austauschbar;OH)
7.2	21 ^d		_	7.69 (d, $J = 16$ Hz; $ArCH =$), 6.40 (d, $J = 16$ Hz; $=$ CHCO—),
7.1	1 ^d		_	3.81 (s; $-COOCH_3$) 3.69 (s; $-COOCH_3$), 2.93 (t, $J = 8 \text{ Hz}$; $ArCH_2$), 2.62 (t, $J = 8 \text{ Hz}$; $-CH(CO)$)
3.1	1 g	7.3	30 ^a	$2.02(t, 5 - 6112, -611_{2}00 -)$
3.12 ^g	7.40 ^d	7.28ª	7.28 ^d	
7.34 ^d	7.18°			9.96 (s; —CHO)
7.23 ^d	7.18°			10.41 (s, sehr breit;COOH), 7.80 (d, $J = 16$ Hz; $ArCH =$),
				6.42 (d, J = 16 Hz; = CHCO-)
7.21ª	7.18°			7.70 (d, $J = 16$ Hz; $ArCH =$), 6.40 (d, $J = 16$ Hz; =CHCO),
7 11d	7 1/2			3.80 (s;COOCH ₃)
/.11*	/.10°			$3.08 (s; -COOCH_3), 2.92 (l, J = 8 HZ; APCH_2-),$
7.11 ^d	7.17°		_	10.31 (s, breit; -COOH), 2.94 (t, $J = 8 \text{ Hz}$; $ArCH_2$), 2.68 (t, $J = 8 \text{ Hz}$; -CH ₂ CO)
3.10 ^g	7.18°	7.29ª		2.00 (0, 0 0.12), 0.1200)
7.39 ^d	7.17°	7.26 ^d		
3.10 ^g	7.29 ^d	7.30ª		2.60 (s; $-COCH_3$)
2.87 ^b	7.15°	7.05ª		
2.89 ^b	7.19ª	7.19 ^a		2.48 (s; $-COCH_3$)
2.86 ^b	7.27 ^d	7.06ª		$2.59 (s; -COCH_3)$
2.8	37°	7.0)5 ^a	

2,2'-Spirobiindan-1,1'-dionen (250 MHz, δ -Werte in ppm in CDCl₃)

^f AB, $J = 16 \,\text{Hz}$

^g Triplett, J = 6 Hz

^h Für H-1 bis H-8 siehe die Bezifferung bei den entsprechenden Formeln ⁱ 60 MHz-Spektrum

Essigsäure-(5-indanylmethyl)ester (4g) C₁₂H₁₄O₂ (190.2)

wurde zwecks ¹H-NMR-Vergleich mit Lit. [11] aus 4f dargestellt. MS (m/e): 190 (37.5, M^+), 148 (100, M-CH₂=C=O), 130 (43, M-CH₃COOH), 115 (44, C₉H₇⁺).

Indan-5-carbaldehyd (4h) C₁₀H₁₀O (146.2)

Zu 110 g (0.75 mol) **4f**, gelöst in 500 ml CH_2Cl_2 fügte man unter Kühlen und Rühren portionsweise 236 g (1.1 mol) *Corey*'s Pyridiniumchlorochromat-Reagens

45 Monatshefte für Chemie, Vol. 118/5

Tabelle 4. ¹H-NMR-Spektren von in 2-Position substituierten

Nr.	H-1	H-2	H-3	<i>H-4</i>	H-5	H-6	H-7	H-8	<i>H-1</i> ′	H-3′	H-2′
12			3 84ª	7 16ª	2 90 ^b	2 030	2 93b	7 7 7ª	29	25b	2 080
13 a		2.99°	3.10 u. 2.80 ^f	7.22ª	2.95 ^b	2.05 2.11°	2.95 ^b	7.61ª	2.8	39 ^b	2.03° 2.07°
13 b		2.95°	3.14 u. 2.82 ^g	7.14 ^d	7.42 ^d	2.88°	2.15°	3.25 ^b	2.8	88°	2.07°
14	—		3.87ª	7.31ª	2.92 ^b	2.10°	2.95 ^b	7.58ª	2.92 ^b	2.95 ^b	2.09°
15 a		h	h	7.21ª	2.94 ^b	2.11°	2.94 ^b	7.58ª	2.9	94 ^b	2.11°
15 b		2.99°	3.14 u. 2.79 ⁱ	7.22ª	2.99— 2.86(m)	2.12°	2.99— 2.86(m)	7.61ª	3.21 ^b	2.99— 2.86(m)	2.07°)
17 b		3.00 ^e	3.13 u. 2.78 ⁱ	7.22ª	2.91 ^e	2.12°	2.91°	7.60ª	3.24 ^b	2.91°	2.14°
19 a		k	k n l	7 24ª	2.93°	2110	2 93°	7 60ª	20	330	211°
20 a	_	m	m	7.20ª	2.89°	2.14°	2.89 ^e	7.58ª	2.8	39°	2.09°
19 b		3.02°	3.13 u. 2.79 ^g	7.21ª	2.92°	2.12°	2.92 ^b	7.60ª	3.30 ^b	2.92 ^b	2.09°
20 b		3.00°	3.10 u. 2.78 ⁱ	7.22ª	2.90°	2.12°	2.90°	7.60ª	3.32 ^b	2.90°*	2.08°
21 a	n	2.79 ^e	n	7.02ª	2.85 ^b	2.06 ^c	2.85 ^b	7.02ª	2.97 ^b	2.94 ^b	2.12°
22 a	0	2.75 ^e	0	7.02 ^a	2.84 ^b	2.07°	2.84 ^b	7.02ª	2.94 ^b	2.91 ^b	2.11°
21 b	р	q	p	7.04ª	2.84 ^b	2.05°	2.84 ^b	7.04ª	3.30 ^b	2.94 ^b	2.10°
22 b	р	q	p	7.04ª	2.83 ^b	2.05°	2.83 ^b	7.04ª	3.25 ^b	2.92 ^b	2.08°
24 b ^t		—	3.58ª	7.22ª	2.96 ^b	2.12°	2.96 ^b	7.80ª	3.27 ^b	2.96 ^b	2.12°
25 b			3.94ª	7.36ª	2.96°	2.12°	2.96 ^e	7.63ª	3.29 ^b	2.96°	2.13°
26 b			3.19 u. 2.84 ^r	7.21ª	2.94 ^b	2.11°	2.94 ^b	7.66ª	3.28 ^b	2.94 ^b	2.11°

^a Singulett

^b Triplett, J = 8 Hz

° Quintett, J = 8 Hz

^d Dublett, J = 8 Hz

^e Multiplett zentriert

^f AB, J = 17 und 8 bzw. 17 und 3 Hz

^g AB, J = 16 und 8 bzw. 16 und 3 Hz

- ^h Nicht genau bestimmbar; Multiplett zwischen 3.27 und 2.75
- ⁱ AB, J = 16 und 8 bzw. 16 und 2 Hz
- ^k Nicht genau bestimmbar; Multiplett zwischen 3.27 und 3.03

(PCC) [12] zu. Nach 2 h Reaktion bei Raumtemperatur wurde vom Niederschlag abdekantiert und noch dreimal mit CH_2Cl_2 nachgewaschen. Die organische Phase wurde mit Wasser extrahiert und anschließend auf 100 ml eingeengt. Durch Gießen über eine kurze mit Al_2O_3 gefüllte Säule wurde eine beträchtliche Vorreinigung erzielt.

Kp.₁₀: $120-122^{\circ}$ (Kp._{0.2}: 79°) [11]; Ausb.: je nach Ansatz zwischen 90 und 96%.

H-4′	H-6′	H-7′ ^s	Sonstige H
7.07ª 7.11ª	6.99 ^d 7.01 ^d	7.14 ^d 7.14 ^d	3.23 (s; $ArCH_2$ —) 3.36 u. 2.58 (AB, $J = 13$ u. 4 bzw. 13 u. 11 Hz; $ArCH_2$ —)
7.13ª	7.02 ^d	7.15 ^d	3.37 u. 2.57 (AB, $J = 13$ u. 3 bzw. 13 u. 11 Hz; $ArCH_2$ —)
7.48ª 7.21ª 7.30ª	7.41 ^d 7.54 ^a	7.27 ^d 7.57 ^a	7.68 (s; $ArCH=$) 3.51 u. ^h (AB, $J = 12$ u. 4 Hz bzw. 12 u. ? Hz; $ArCH_2$ —), 2.59 (s; —COCH ₃) 3.38 u. 2.72 (AB, $J = 14$ u. 4 bzw. 14 u. 10 Hz; $ArCH_2$ —), 2.57 (s; —COCH ₃)
7.37ª	7.50ª		10.13 (s; —CHO), 3.31 u. 2.72 (AB, $J = 15$ u. 4 bzw.
7.24ª 7.17ª		7.94ª 7.75ª	3.75 u. ^k (AB, $J = 12$ u. 4 Hz bzw. 12 u. ? Hz; $ArCH_2$ —) 3.71 u. ^m (AB, $J = 12$ u. 4 Hz bzw. 12 u. ? Hz; $ArCH_2$ —), 3.88 (s; —COOCH ₃)
/.30"	1.19°		3.41 u. 2.66 (AB, $J = 13$ u. 4 bzw. 13 u. 10 Hz; $ArCH_2$)
7.30ª	7.70ª	—	3.89 (s; $-COOCH_3$), 3.39 u. 2.63 (AB, $J = 13$ u. 4 bzw. 13 u. 10 Hz; $ArCH_3$)
7.16 ^a 7.11 ^a 7.31 ^a 7.24 ^a 7.40 ^a 7.59 ^a 7.35 ^a	7.78 ^a 7.67 ^a 7.74 ^a 7.70 ^a 7.77 ^a	7.93 ^a 7.75 ^a — —	3.20 (d, $J = 7 \text{ Hz}$; $ArCH_2$ —) 3.85 (s; —COOCH ₃), 3.13 (d, $J = 7 \text{ Hz}$; $ArCH_2$ —) 2.80 (,,s"; $ArCH_2$ —) 3.88 (s; —COOCH ₃), 2.77 (,,s"; $ArCH_2$ —) 3.92 (s; —COOCH ₃), 3.58 (s; $ArCH_2$ —) 8.09 (s; =CH—), 3.95 (s; —COOCH ₃) 4.47 (s; —CH—), 3.89 (s; —COOCH ₃)

Hydrindacen-1-onen (250 MHz, δ -Werte in ppm in CDCl₃)

¹ Nicht genau bestimmbar; Multiplett zwischen 2.93 und 2.78

^m Nicht genau bestimmbar; Multiplett zwischen 3.20 und 2.74

ⁿ AB zwischen 3.00–2.79 und 2.66, J = 15 und 7 Hz ^o AB zwischen 3.00–2.75 und 2.62, J = 15 und 7 Hz

^p AB zwischen 3.00–2.69 und 2.61, J = 15 und 3 Hz

^q Multiplett zwischen 3.00-2.69

^r AB, J = 17 Hz

^s Für H-1 bis H-7' siehe die Bezifferung bei den entsprechenden Formeln

^t 60 MHz-Spektrum

5-Chlormethyl-indan (4i) C₁₀H₁₁Cl (166.6)

Zu 143 g (1.2 mol) SOCl₂ in 100 ml Benzol und einigen Tropfen Pyridin wurden 148 g (1 mol) 4f, gelöst in 400 ml Benzol, über 1.5 h zugetropft. Nach 1 h Kochen am Rückfluß wurde über Nacht nachgerührt. Nach Entfernung des Lösungsmittels wurde fraktioniert destilliert. Kp.₂₀: 148–150°; n_D^{21} : 1.5627; Ausb.: 94%.

3-(5-Indanyl)-prop-2-ensäure (4j) $C_{12}H_{12}O_2$ (188.2)

Darstellung aus 4h nach Knoevenagel-Doebner.

Zu 156 g (1.5 mol) Malonsäure in 180 ml Pyridin und 6 ml Piperidin wurden 146 g (1 mol) Aldehyd **4h** zugefügt. Die Mischung wurde 24 h bei 80° gerührt. Nach Gießen auf Eis/Salzsäure wurde das Produkt isoliert und aus Methanol umkristallisiert. Ausb.: 91%; Fp.: 163–165° (164–166°) [11].

3-(5-Indanyl)-prop-2-ensäuremethylester (**4**k) C₁₃H₁₄O₂ (202.3)

Dargestellt durch Einwirken von CH_2N_2 auf **4 j**. Kp._{0.01}: ca. 100° (Kugelrohr); Fp.: 78–80° (CH₃OH).

3-(5-Indanyl)-propansäure (**3 a**) C₁₂H₁₄O₂ (190.2)

Diese Verbindung ließ sich durch katalytische Hydrierung von 4j (in Dioxan) oder von 2a (in Dioxan/2-*Pr*OH) mit Pd/C in der *Parr*-Apparatur bei einem Druck von 4–5 atm darstellen. Allgemeine Hydrierzeit ca. 18 h. Ausb.: 95%; Fp.: 85–86° (PE); (84–85°) [13], (86–87°) [4], (80–81°) [7], (82–84°) [14], (85–86°) [15], (86°) [16].

3-(5-Indanyl)-propansäuremethylester (**3b**) C₁₃H₁₆O₂ (204.3)

wurde dargestellt durch katalytische Hydrierung mit Pd/C von **2b** in 2-*Pr*OH bei den üblichen Bedingungen. Ausb.: 97%; Fp.: 27–28°.

s-Hydrindacen-1-on (5a) (Cyclopenteno-5,6-indanon-1) C₁₂H₁₂O (172.2)

59.3 g (0.31 mol) Säure **3a** wurden portionsweise zu 400 ml *PPS* gegeben. Nach Rühren bei 80° über 5h wurde aufgearbeitet. Das Rohprodukt wurde im Kugelrohr destilliert (120—140°/0.3 mm). Ausbeute an **5a** und **5b** 50.15 g (93%). Das Isomerenverhältnis wurde mittels Gaschromatographie bestimmt. **5a**: **5b** = 80:20, (79:21) [4].

5a konnte aus dem Destillat durch dreimaliges Kristallisieren aus PE rein gewonnen werden (50% Ausbeute auf **3a** bezogen). Fp.: 82–84°, (75–76°) [13], (80–81°) [14], (82°) [16].

Aus den vereinigten Mutterlaugen der PE-Kristallisation wurde durch Chromatographie auf der Mitteldruckanlage (Laufmittel: *PE* mit 15% *EE*) das unsymmetrische Keton **5b** gewonnen. *as*-Hydrindacen-1-on (**5b**) (Cyclopenteno-6,7-indanon-1): Fp.: 90–91° (CH₃OH), (89–90°) [13], (85–86°) [16].

5- β -Chlorpropionyl-indan (6a) C₁₂H₁₃ClO (208.7)

Zu 29.4 g (0.22 mol) AlCl₃ in 150 ml CH₂Cl₂ wurde über eine halbe Stunde 25.4 g (0.2 mol) 3-Chlorpropionsäurechlorid zugetropft und anschließend 23.6 (0.2 mol) Indan **4 a**. Nach 1 h Reaktionszeit wurde hydrolisiert (bei Destillation im Hochvakuum trat z. T. Zersetzung ein). Nach Aufarbeitung wurde das Rohprodukt durch Versetzen mit *PE* zur Kristallisation gebracht und anschließend im Soxhlet mit *PE* ausgelaugt. Nach Konzentration des Extraktes wurden 32.1 g (77%) an **6 a** erhalten. Fp.: 66–68° bzw. 68–69° nach nochmaliger Kristallisation aus *PE*, (62–67°) [17], (68–69°) [14].

5- β -Brompropionyl-indan (6 b) C₁₂H₁₃BrO (253.1)

Darstellung analog 6 a. Ausb.: 90%; Fp.: 77-78° (PE).

Cyclisierung von 6 zu 5 a und 5 c

10.4 g (0.05 mol) **6 a** wurden portionsweise unter Rühren zu 40 ml konz. H_2SO_4 gegeben. Die dunkelrote Lösung wurde 3.5 h bei 70° (Badtemperatur) gehalten. Nach Gießen auf Eis/Wasser wurde mit Benzol/Ether extrahiert. Rohausb.: 8.05 g (93%); 7.37 g (86%) nach Kugelrohrdestillation (ca. 100°/0.5 mm). Durch siebenmaliges Kristallisieren konnte das symmetrische Keton **5 a** zu 40%, bezogen auf das Isomerengemisch, **5 a/5 c** isoliert werden.

Eine chromatographische Trennung der beiden Komponenten im größeren Maßstab war nicht möglich. Lediglich zur Analyse wurde eine kleine Menge getrennt.

Cyclopenteno-4,5-indanon-1 (5c)

Fp.: 104–106°, (108°) [13], (108–109°) [18].

Das Isomerengemisch **5** ließ sich auch direkt ohne Isolierung von **6a** darstellen. Nach Bildung von **6a** (Dünnschichtanalyse) wurde das Lösungsmittel im Vakuum entfernt. Zur pastösen Masse wurde unter Rühren 230 ml konz. H_2SO_4 zugetropft. Das Reaktionsgemisch wurde dann 3 h bei 70°, 3 h bei 80° und 8 h bei 90° gehalten. Nach Aufarbeitung wurden 32.7 (95%) Rohprodukt erhalten. Die Reinigung erfolgte durch Kugelrohrdestillation. Ausb. an **5a** und **5c**: 22 g (64%).

2-Brom-s-hydrindacen-1-on (7) C₁₂H₁₁BrO (251.1)

6.3 g (25 mmol) **6b** wurden mit 30 ml konz. H_2SO_4 in analoger Weise behandelt. Das Rohprodukt wurde durch Kugelrohrdestillation (Kp_{0.001}: ca. 140°) gereinigt. Das erhaltene Destillat wurde chromatographiert und insgesamt 33% der Verbindung 7 isoliert. Fp.: 66–69°; MS (*m*/e): 252 und 250 (17.3% bzw. 15.6%, *M*⁺), 171 (100, *M*-Br).

s-*Hydrindacen* (8 a) C₁₂H₁₄ (158.2)

Der symmetrische Kohlenwasserstoff wurde durch katalytische Hydrierung von **5 a** mit Pd/C in 2-*Pr*OH dargestellt. Druck 4-5 atm; Reaktionszeit: 18 h. Fp.: 53-54° (CH₃OH), (52-54°) [15]; Ausb.: 96%.

4-Acetyl-s-hydrindacen (8b) $C_{14}H_{16}O$ (200.3)

Aus 22.2 g (0.166 mol) AlCl₃ und 15.7 g (0.2 mol) CH₃COCl in 200 ml CH₂Cl₂ wurde der Komplex dargestellt und anschließend 15.8 g (0.1 mol) **8 a** in 150 ml CH₂Cl₂ zugetropft. Nach 3 h Reaktionszeit wurde aufgearbeitet. Kp._{0.3}: ca. 110° (Kugelrohr); Ausb.: 19.6 g (98%), nach Kristallisation aus CH₃OH 18.6 g (90%); Fp.: 65–66°, (64–65°) [14].

s-Hydrindacen-4-carbonsäure (8 c) $C_{13}H_{14}O_2$ (202.3)

8c wurde durch Haloformabbau mit der doppelt erforderlichen Menge an NaOBr aus 3 mmol 8b dargestellt. Ausb.: 82%; Fp.: 236–238° (Benzol/PE), (230–231°) [14].

Bei größeren Ansätzen (0.16 mol) gestaltete sich der Haloformabbau nicht quantitativ. Es konnten maximal nur ca. 15 g (46%) der Säure **8 c** und 6.9 g (20%) des Ausgangsmaterials **8 b** isoliert werden. Der Rest bestand aus einem leicht sublimierbaren Produkt, das laut Massenspektrum aus mono- bis tribromierten **8 b** bestand.

Deshalb wurde die Säure 8c durch oxidative Spaltung des entsprechenden Glyoxalderivats von 8b dargestellt.

9.66 g (48.3 mmol) **8 b** wurden mit 100 ml Dioxan versetzt und 6.4 g (58 mmol) frisch sublimiertes SeO_2 und 2 ml H₂O zugegeben [14]. Nach 6 h Erhitzen wurde vom ausgefallenen Se im heißen Zustand filtriert und mit CH₂Cl₂ nachgewaschen. Das Lösungsmittel wurde im Vakuum entfernt. Ein Teil des Rückstandes wurde mit CH₃OH/H₂O aufgekocht. Der ausgefallene Niederschlag **8 e** wurde abfiltriert und nochmals aus dem gleichen Lösungsmittel umkristallisiert.

4-(2-Hydroxy-2-methoxy-1-oxoethyl)-s-hydrindacen (8 e) C₁₅H₁₈O₃ (246.3)

Fp.: 62--63°; MS (*m*/e): 214 (6.2%, 4-s-Hydrindacenylglyoxal), 185 (100, 214-CHO).

Die Hauptmenge der SeO₂-Oxidation wurde in CH₃OH aufgeschlämmt (ca. 150 ml) und mit 62 ml H_2O_2 (30% ig) versetzt. Unter Eiskühlung wurden 140 ml 10% NaOH zugetropft und noch 1 h nachgerührt. Nach 2 h Erhitzen am Rückfluß wurde heiß filtriert und mit konz. HCl angesäuert. Der Niederschlag wurde mit CH₂N₂ verestert. Ausb. an **8d**: 7.7 g (74%).

Darstellung von **8d** über das [2-(4-s-Hydrindacenyl)-2-oxo-N-ethyl]pyridiniumiodid (**8f**) C₁₉H₂₀INO (405.3)

Darstellung analog Lit. [9].

10 g (0.05 mol) **8 b** und 12.7 g (0.05 mol) I₂ wurden in 25 ml Pyridin 1.5 h am Wasserbad erhitzt. Nach Kühlen über Nacht im Eisschrank wurde vom Niederschlag abfiltriert. Dieser wurde mit Wasser, CH₃OH und CH₂Cl₂ gewaschen und anschließend aus CH₃OH/H₂O umkristallisiert. Ausb.: 7.5 g (37%); Fp.: 250° (Zers.). FAB: Kation C₁₉H₂₀NO (*m*/e): 278 (100%). (Das FAB-Spektrum wurde mit dem 311-A-Massenspektrometer in Verbindung mit dem 166-Spektrosystem der Fa. Varian MAT in Butantriol/H₃PO₄-Matrix mit Xe bei 10 KV gemessen.)

Im Gegensatz zur Literatur war die Spaltung mit NaOH nicht nach 2h beendet, sondern bedurfte noch weiterer 4h Erhitzen. Die isolierte Säure wurde mit CH₂N₂ behandelt. Der angefallene Ester **8d** wurde durch Kugelrohrdestillation gereinigt. Ausb.: 3.7 g (93%) auf **8f** bezogen.

Aus dem Filtrat bei der Isolierung von 8f und deren Mutterlauge konnten nach analoger Behandlung noch weitere 1.06 g (10%) 8d gewonnen werden, so daß ein Gesamtumsatz von 44% erzielt werden konnte.

s-Hydrindacen-4-carbonsäuremethylester (8 d) $C_{14}H_{16}O_2$ (216.3)

Darstellung aus 8c durch Umsetzung mit CH₂N₂. Fp.: 65–66° (CH₃OH), (64–65°) [14].

s-Hydrindacen-4-carbaldehyd (8g) C₁₃H₁₄O (186.3)

Zu 10.29 g (65 mmol) **8 a** und 12.7 g (110 mmol) Dichlormethyl-methyl-ether, gelöst in 150 ml CH₂Cl₂, wurden unter Eiskühlung portionsweise 290 mmol (32 ml) TiCl₄ gegeben. Nach halbstündiger Reaktion bei 0° wurde noch 2 h bei Raumtemperatur gerührt. Nach Hydrolyse mit Eis/HCl wurde die organische Phase noch zweimal mit verd. HCl ausgeschüttelt. Nach Neutralwaschen und Trocknen über MgSO₄ wurde das Rohprodukt im Kugelrohr destilliert. Kp._{0.5}: ~ 110°; Ausb.: 9.5 g (79%); Fp.: 49–51°.

Oxim von 8g (= 8h) $C_{13}H_{15}NO$ (201.3)

5 mmol **4 g** wurden in 15 ml CH₃OH aufgeschlämmt und je 10 mmol Hydroxylamin-hydrochlorid und Natriumacetat zugegeben. Nach eineinhalbstündigem Erhitzen am Rückfluß wurde nach Abkühlen der Niederschlag abfiltriert. Dieser wurde mit CH₃OH ausgekocht. Ausb.: 0.75 g (75%); Fp.: 168—170°; MS (m/e): 201 (17.6%, M^+), 184 (100, M-OH).

Durch Konzentration der Mutterlauge konnten noch weitere 0.19 g (18%) isoliert werden. Fp.: 158–163; Massenspektrum identisch.

4-Hydroxymethyl-s-hydrindacen (8i) C₁₃H₁₆O (188.3)

Darstellung durch Kochen mit LiAlH₄ in Diethylether über 5 h. Ausb.: 90%; Fp.: 84–85° (*PE*/Benzol). Durch Konzentration der Mutterlauge konnten noch weitere 6% an reinem **8i** isoliert werden.

Bis-(5-indanylmethyl)-malonsäurediethylester (9 c) $C_{27}H_{32}O_4$ (420.6)

Zu einer siedenden Mischung von 152 g (0.92 mol) 4i und 72 g (0.45 mol)Malonsäurediethylester in 300 ml Ethanol wurden unter Rühren 0.9 mol Natriumethylat in 400 ml Ethanol zugetropft. (Bei Zugabe von 4i zum Dinatriumsalz des Malonesters lagen die Ausbeuten um einiges tiefer — zwischen 50 und 76%.) Nach Kochen über Nacht wurde das Lösungsmittel entfernt. Das Produkt wurde mit CH₂Cl₂ extrahiert, neutral gewaschen und über MgSO₄ getrocknet. Das Rohprodukt wurde fraktioniert destilliert.

Kp.0005: 207°; Ausb.: 75% (nach Kristallisation aus CH₃OH); Fp.: 71–73°.

Bis-(5-indanylmethyl)-malonsäuredimethylester (9b) C₂₅H₂₈O₄ (392.5)

9b wurde dargestellt durch Einwirkung von CH₂N₂ auf 9a. Fp.: 91–93°.

Bis-(5-indanylmethyl)-malonsäure (9 a) C₂₃H₂₄O₄ (362.5)

72.1 g (0.17 mol) Ester **9 c** wurden unter Erwärmen in 200 ml *Et*OH gelöst und 29 g (0.51 mol) KOH in 80 ml Wasser über 1.5 h zugetropft. Es wurde über Nacht weiter erhitzt. Nach dem Abkühlen (Eis/Kochsalz) wurde mit Ether überschichtet und mit verd. H₃PO₄ auf *pH* 2 angesäuert. Nach Entfernen des Lösungsmittels wurde der Rückstand mit *PE* aufgekocht und heiß filtriert. Das zurückgebliebene Kristallisat bestand zum Hauptteil aus der Malonsäure **9 a**, welche zur weiteren Reinigung im Soxhlet mit *PE* weiter ausgelaugt wurde. Ausb.: 17.3 g (28%); Fp.: 158—159° (Zers.).

Bis-(5-indanylmethyl)-essigsäure (10 a) C₂₂H₂₄O₂ (320.4)

Im Filtrat des *PE*-Auszuges fiel nach dem Abkühlen zu 50% 10a aus. Fp.: 107—108°.

Bis-(5-indanylmethyl)-essigsäuremethylester (10b) C₂₃H₂₆O₂ (334.5)

Versetzen von 10 a, suspendiert in CH₃OH, mit etherischer CH₂N₂-Lösung. Fp.: $43-45^{\circ}$.

Verseifung von 9c zur Darstellung von Bis-(5-indanylmethyl)-malonsäuremonoethylester (9d) $C_{25}H_{28}O_4$ (392.5)

Zur kochenden Lösung von 138 g (0.33 mol) 9c in 700 ml *Et*OH wurden 13.2 g (0.33 mol) NaOH in 200 ml H₂O über 6 h zugetropft. Nach weiterem 5 h Erhitzen

wurde bei Raumtemperatur nachgerührt. Vom öligen Bodensatz wurde abdekantiert und die alkalische Phase auf freie Säure 9d aufgearbeitet. Ausb.: 11.5g (8.9%); Öl (nicht im Hochvakuum destillierbar, da Zersetzung zu 10c).

Der Rückstand (90%) bestand aus nicht umgesetztem Ester 9 c. Die Verseifung wurde diesmal mit 1 Equiv. KOH — 5 h Zutropfen und Erhitzen über Nacht — durchgeführt. Nach Aufarbeitung und Produktanalyse ergab sich folgender Befund: 49% 9 c, 27% 10 c, 19% 10 a und nur 4% an gewünschtem Produkt 9 d.

Selbst bei dreitägigem Erhitzen mit NaOH blieben noch 44% Ausgangsmaterial 9 c erhalten. Die Ausbeute an 9 d belief sich wieder zu 8%, wogegen der Anteil der Essigsäure 10 a auf 41% anstieg und demzufolge sich der Anteil des Esters 10 c nur mehr zu 6% belief.

Cyclisierung von 9 a zu 2,2'-Spirobi-(s-hydrindacen)-1,1'-dion (11 a)

13.8 g (38 mmol) **9 a** wurden mit 17.4 g (83 mmol) PCl₅ bis zur Auflösung in 70 ml CHCl₃ gerührt. Nach Entfernung des Lösungsmittels im Vakuum wurde nach Zugabe von 100 mg wasserfreiem FeCl₃ 0.5 h bei 120° gerührt und anschließend 3 h bei Wasserstrahlvakuum. Nach Zugabe weiterer 100 mg Katalysator wurde die Temperatur auf 150° erhöht. Nach 12 h wurde nochmals die gleiche Menge FeCl₃ zugefügt und die Reaktion bei 190° weitere 24 h durchgeführt. Das Reaktionsgemisch wurde direkt aus dem Reaktionskolben durch Kugelrohrdestillation (Kp._{0.001}: ca. 220°) isoliert. Durch Chromatographie an AlCl₃ mit *PE* konnte das Nebenprodukt **12** abgetrennt werden.

2-(5-Indanylmethyl)-1-chlor-indacen (12) $C_{22}H_{21}Cl$ (320.9)

Ausb.: 19%; Fp.: 97—101° (CH₃OH); MS (*m*/e): 322 u. 320 (4.1% u. 12.9%, *M*⁺), 285 (6.4, *M*-Cl), 131 (100, 5-Indanylmethyl).

Ein Teil des verbliebenen Isomerengemisches (45% Ausb.) **11 a—11 c** wurde zur Charakterisierung der einzelnen Komponenten durch mehrmalige Chromatographie auf Kieselgel-Dünnschichtplatten (Laufm.: Methanol-Benzol-Gemische) getrennt.

11 a: Ausb.: 27%; Fp.: 295–296° (CH₃OH); MS (m/e): 328 (100%, M^+), 300 (44.7, M-CO), 272 (15.5, M-2 CO); C₂₃H₂₀O₂ (328.4). Das symmetrische Isomere **11 a** konnte auch aus dem Kugelrohrdestillat durch mehrmaliges Kristallisieren aus Methanol-Benzol rein erhalten werden. Ausb.: 1.2 g (10%).

11 b: Ausb.: 13%; Fp.: 216–219° (CH₃OH).

11 c: Ausb.: ca. 5%; Fp.: 223–226° (CH₃OH).

Cyclisierung von 10 a zu 2-(5-Indanylmethyl)-s-hydrindacen-1-on (13 a)

45.8 g (0.14 mol) der Essigsäure **10 a** wurden mit SOCl₂ ins Säurechlorid übergeführt (bereits beim Abdestillieren von überschüssigem SOCl₂ trat beträchtliche Cyclisierung, die sich beim Destillieren des Säurechlorids fast quantitativ gestaltete, ein). Das Säurechlorid wurde in Benzol gelöst und unter Erhitzen am Rückfluß 44.3 g (0.17 mol) SnCl₄ über eine halbe Stunde zugetropft. Nach weiteren 2 h wurde nach Abkühlen mit Eis/Salzsäure hydrolysiert und aufgearbeitet. Das Isomerengemisch wurde im Kugelrohr bei einem Druck von 0.001 mm und einer Badtemperatur von 180° destilliert; Ausb.: 95%. Durch zweimaliges Kristallisieren aus *PE* wurde **13 a** rein erhalten, **13 b** durch Kristallisation der Mutterlaugen aus Methanol.

13 a: Ausb.: 71%; Fp.: 126—128°; **MS** (*m*/e): 302 (61.6%, *M*⁺), 171 (100, $C_{12}H_{11}O$), 132 (57.4, 5-Methylindan), 131 (61.2, 5-Indanylmethyl); $C_{22}H_{22}O$ (302.4).

13 b: Ausb.: 24%; Fp.: 94—96%; MS (*m*/e): 302 (35.5%), 171 (100), 132 (65), 131 (71).

2-(5-Indanylmethylen)-s-hydrindacen-1-on (14) C₂₂H₂₀O (300.4)

1.9 g (11.3 mmol) **5 a** und 1.6 g (11 mmol) **4 h** wurden in 30 ml *Et*OH gelöst und tropfenweise 1 ml 1 *N* NaOH zugefügt. Nach 1 h Rühren wurde nochmals 1 ml NaOH zugegeben und weitere 2 h gerührt. Nach Neutralisation mit Essigsäure wurde der Niederschlag abfiltriert und aus Benzol/Methanol umkristallisiert.

Ausb.: 3.2 g (95%); Fp.: 214—216°; Kp._{0.001}: 220° (Sublimation im Kugelrohr). Durch katalytische Hydrierung mit Pd/C in Dioxan über 2 h konnte nach Kristallisation aus *PE*/Benzol **13 a** zu 92% erhalten werden.

Acetylierung von 13a

Das Reagens, Acetanhydrid bzw. Acetylchlorid und AlCl₃ wurden in CH_2Cl_2 vorgelegt und **13 a** (gelöst in CH_2Cl_2) über 1 h zugetropft. Bezüglich der Reaktionsbedingungen siehe Tab. 1. In manchen Fällen lagen die Edukte **15 a** und **15 b** noch unverändert nebeneinander vor. In anderen Fällen cyclisierte **15 a** z. T. oder quantitativ (besonders beim Destillieren) zu **16**.

2-[6-Acetyl-(5-indanylmethyl)]-s-hydrindacen-1-on (15 a) C₂₄H₂₄O₂ (344.5)

15 a wurde durch mehrmalige Schichtchromatographie aus einer Reaktionsmischung, die noch kein cyclisiertes Produkt 16 enthielt, isoliert. Trotz kontinuierlicher Cyclisierung konnte eine analytische Probe isoliert werden. Fp.: $133-135^{\circ}$ (CH₃OH).

2-[7-Acetyl-(5-indanylmethyl)]-s-hydrindacen-1-on (15b)

Nach Destillation (Kugelrohr) des Friedel-Crafts-Produktes waren im Destillat nur mehr die Komponenten 16 und 15b enthalten. Durch Auskochen des Produktgemisches mit CH₃OH (16 hierin schwer löslich) wurde 15b in der Mutterlauge stark angereichert. Verbliebenes 16 wurde durch mehrstündiges Erhitzen unter dem Siedepunkt (ca. bei $150^{\circ}/0.001 \text{ mm}$) polymerisiert. Nach anschließender Destillation und Kristallisation konnte reines 15b erhalten werden.

Fp.: 85–87° (CH₃OH/PE); MS (m/e): 344 (33.1%, M^+), 172 (100, s-Hydrindacen-1-on).

l'-Methylen-2,2'-spirobi-(s-hydrindacen)-1-on (16) C₂₄H₂₂O (326.5)

Das Spiroprodukt **16** wurde aus dem Destillat der *Friedel-Crafts*-Acetylierung entweder durch Chromatographie oder Kristallisation isoliert.

Kp._{0.001}: ca. 150° (Subl.); Fp.: 207–209° (CH₃OH); MS (*m*/e): 326 (100, *M*⁺), 311 (90.1, *M*-CH₃).

2-[6-Carboxy-(5-indanylmethyl)]-s-hydrindacen-1-on (19 a) C₂₃H₂₂O₃ (346.4)

328 mg (1 mmol) **11 a** wurden in 10 ml CH₃OH suspendiert und nach Zusatz von 100 mg (2.5 mmol) NaOH 1.5 h erhitzt. Es wurde mit H₃PO₄ versetzt, das Lösungsmittel im Vakuum entfernt und mit CH₂Cl₂ extrahiert.

Fp.: 175—179° (CH₃OH); Ausb.: 94%; $MS(\tilde{m}/e)$: 346 (72.6%, M^+), 328 (100, M-H₂O), 300 (39.8, M-HCOOH), 171 (86, $C_{12}H_{11}O$).

Beim Destillieren im Kugelrohr (ca. $260^{\circ}/0.001$ mm) cyclisierte **19 a** zu 95% zu **11 a**.

Methylester von **19 a** (= **20 a**) $C_{24}H_{24}O_3$ (360.5)

Fp.: 116—118° (CH₃OH); MS (*m*/e): 360 (54%, *M*⁺), 328 (100, *M*-CH₃OH), 300 (35.2, *M*-HCOOCH₃), 190 (17.1, *M*-C₁₂H₁₀O), 171 (34.4, C₁₂H₁₁O).

2-[6-Carboxy-(5-indanylmethyl)]-s-hydrindacen (21 a) $C_{23}H_{24}O_2$ (332.5)

Dargestellt durch katalytische Hydrierung von **19 a** mit 10 Gew.% Pd/C (10%ig) in Dioxan bei einer Reaktionszeit von 20 h und einem Druck zwischen 4 und 5 atm. Ausb. nahezu quantitativ; Fp.: 179–182° (CH₃OH); MS (m/e): 332 (27.1%, M^+), 314 (3, M-H₂O), 288 (13.9, M-CO₂), 157 (100, C₁₂H₁₃).

Methylester von **21 a** (= **22 a**) $C_{24}H_{26}O_2$ (346.5)

Durch katalytische Hydrierung von 20a analog der Darstellung von 21a konnte 22a nach Kristallisation aus CH₃OH zu 97% erhalten werden.

Fp.: 100–101°; MS (*m*/e): 346 (69.7%, *M*⁺), 314 (30.4, *M*-CH₃OH), 190 (100, $C_{12}H_{14}O_2$), 158 (86.8, $C_{12}H_{14}$), 157 (89.2, $C_{12}H_{13}$), 156 (83.9, $C_{12}H_{12}$).

Haloformabbau von 15b

15 b, gelöst in der gerade notwendigen Menge Dioxan, wurde unter Kühlung zu einer NaOBr-Lösung zugetropft. Über molare Verhältnisse und Reaktionszeiten vgl. Schema 4.

2-[7-Carboxy-(5-indanylmethyl)]-s-hydrindacen-1-on (19b) C₂₃H₂₂O₃ (346.4)

Durch Reaktion von 15b mit 3molarem Überschuß an NaOBr und einer Reaktionszeit von 4h konnte nach Aufarbeitung 58% der Säure 19b isoliert werden.

Kp._{0.001}: 220° (Kugelrohr); Fp.: 211–215° (CH₃OH); MS (*m*/e): 346 (46.9%, *M*⁺), 328 (37.3, *M*-H₂O), 300 (10.1, *M*-HCOOH), 171 (100, C₁₂H₁₁O).

Methylester von **19 b** (= **20 b**) $C_{24}H_{24}O_3$ (360.5)

Fp.: 123—126° (CH₃OH): MS (m/e): 360 (41.8%, M^+), 328 (100, M^- CH₃OH), 300 (21, M-HCOOH), 188 (43.3, M-5a), 171 (77.4, C₁₂H₁₁O).

2-Brom-2-[7-carboxymethyl-(5-indanylmethyl)]-s-hydrindacen-1-on (24b) C₂₄H₂₃BrO₃ (439.4)

15 b wurde mit der stöchiometrischen Menge NaOBr 1 h bei Raumtemperatur gerührt. Nach Zusatz von Na₂S₂O₅ wurde die alkalische Phase mit Benzol extrahiert (Ausb.: 42 Gew.%). Eine versuchte Destillation dieses Extraktes führte zur überwiegenden Zerstörung des Produktes. Es konnten lediglich 17% Ausgangsmaterial **15 b** rückgewonnen werden. Die alkalische Phase wurde nach Ansäuern mit CH₂Cl₂ ausgeschüttelt. Nach Aufarbeitung wurde mit CH₂N₂ verestert und ein Teil chromatographiert. Das schneller wandernde Produkt (Gesamtausb.: 20%) erwies sich als in 2-Stellung bromiertes **20 b = 24 b**.

Öl: MS (*m*/e): 440 und 438 (1.8 und 1.9%, *M*⁺), 408 und 406 (19.7 und 18.7, *M*-CH₃OH), 359 (72.3, *M*-Br), 327 (100, *M*-Br—CH₃OH), 299 (33.9, 327-CO). Das gewünschte Produkt **20 b** war zu 38% enthalten.

Durch halbstündiges Hydrieren mit Pd/C in CH_3OH -Dioxan konnte das Substanzgemisch 20 b und 24 b als reines 20 b isoliert werden.

2-[7-Carboxy-(5-indanylmethylen)]-s-hydrindacen-1-on (**25 a**) C₂₃H₂₀O₃ (344.4)

Ließ man die doppelt erforderliche Menge an NaOBr über 20 h bei Raumtemperatur auf **15b** einwirken, so fiel das Natriumsalz von **25 a** aus. Nach dem Abfiltrieren wurde es mit Wasser, Ether und Aceton gewaschen und nach Aufschlämmung in CH₃OH mit H₃PO₄ angesäuert. Fp.: 290–293° (Zers.).

Methylester von **25 a** (= **25 b**) $C_{24}H_{22}O_3$ (358.5)

Darstellung aus **25 a** durch Reaktion mit CH_2N_2 oder aus **24 b** durch HBr-Abspaltung beim Destillieren im Kugelrohr. Kp._{0.001}: 210–220°; Fp.: 217–219° (CH₃OH/Benzol).

Epoxid von **25 b** (= **26 b**) $C_{24}H_{22}O_4$ (374.5)

Um eventuell **25 a** quantitativ aus **15 b** zu erhalten, wurde die Menge an NaOBr nochmals verdoppelt. Nach Reaktion von 18 h bei Raumtemperatur wurde Na₂S₂O₅ zugegeben (wäßrige Phase schwach alkalisch) und mit CH₂Cl₂ mehrmals ausgeschüttelt. Nach Ansäuern und Aufarbeiten konnte nach Verestern mit CH₂N₂ **26 b** zu 44% isoliert werden. Bei einer versuchten Destillation trat Zersetzung des Produktes ein. Fp.: 156–158° (CH₃OH); IR (KBr): 1727 und 1720 cm⁻¹ (C=O); MS (*m*/e): 374 (37.4%, *M*⁺), 356 (3.2, *M*-H₂O), 314 (55.9, *M*-HCOOCH₃); CH-Analyse: gefunden C 77.33%, H 5.96%; berechnet C 76.98%, H 5.92%.

Indan-4,6-dicarbonsäure (27 a) $C_{11}H_{10}O_4$ (206.2)

Die wäßrig alkalische Phase wurde angesäuert und der Niederschlag 27 a abfiltriert. Ausb.: 33%; Fp.: $> 310^{\circ}$ (Zers.).

Dimethylester von 27 a (= 27 b) $C_{13}H_{14}O_4$ (234,3)

Darstellung durch Umsetzung mit CH₂N₂. Fp.: 77–79° (CH₃OH); MS (m/e): 234 (72.6%, M^+), 219 (27.8, M-CH₃), 202 (66.3, M-2 CH₃), 174 (25.0, M-HCOOCH₃), 115 (100, C₉H₇).

2,2'-Spirobi-(s-hydrindacen)-1-on-1'-ol (18) C₂₃H₂₂O₂ (330.4)

302 mg (1 mmol) **13 a** wurden in 5 ml CH₂Cl₂ gelöst. Nach Zusatz von 196 mg (1.7 mmol) Dichlormethyl-methyl-ether wurde unter Eiskühlung 4.5 mmol (0.5 ml) TiCl₄ über 1 h zugetropft. Nach weiterem 1.5 h Rühren wurde der rote Komplex mit Eis/HCl zerstört. Nach Aufarbeitung wurde das Produkt 2 h bei ca. 120° im Hochvakuum erhitzt, wobei **17 a** zu **18** cyclisierte. Durch präparative Schichtchromatographie konnte **18** zu ca. 40% erhalten werden. Fp.: 191–195° (Benzol); MS (m/e): 330 (38.2%, M^+), 312 (100, M-H₂O).

Bei einem neuen Ansatz wurde auf die Isolierung von 18 verzichtet. Das nach dem Erhitzen erhaltene Rohgemisch wurde mit aktiviertem Braunstein über Nacht in Benzol am Rückfluß erhitzt. Durch Chromatographie des aufgearbeiteten Gemisches konnten 40% 11 a isoliert werden.

Als weiteres Produkt ließ sich in der Reaktionsmischung nachweisen:

2-[7-Formyl-(5-indanylmethyl)]-s-hydrindacen-1-on (**17 b**) $C_{23}H_{22}O_2$ (330.4) Öl; MS (*m*/e): 330 (38.7%, *M*⁺), 171 (100, $C_{12}H_{11}O$). 2,2'-Spirobi-(s-hydrindacen)-1,1'-diol (23) C₂₃H₂₄O₂ (332.5)

Um Verbindung 18 zweifelsfrei charakterisieren zu können, wurde diese, als auch das Dion 11 a mit überschüssigem LiAlH₄ in siedendem *THF* durch Reaktion über Nacht reduziert. In beiden Fällen wurde in sehr guten Ausbeuten (ca. 90%) das Diol 23 erhalten. Fp.: $207-210^{\circ}$ (Benzol/*PE*).

Carboxylierung von 13 a

2 mmol Keton 13 a wurden zu 10 mmol Oxalylchlorid und 6 mmol AlCl₃ in CH_2Cl_2 getropft. Nach Reaktion über Nacht wurde mit Eis/HCl hydrolisiert und 0.5 h gerührt. Da nach Aufarbeitung zum Großteil noch das Säurechlorid vorlag, wurde das Rohprodukt mit KOH in CH_3OH 4 h erhitzt. Nach Ansäuern wurde das Gemisch der beiden Säuren 19 a und 19 b zu 92% erhalten. Dieses Gemisch wurde im Kugelrohr destilliert und zeigte nach Analyse folgende Zusammensetzung: 70% 19 b und 30% 11 a.

2-[7-Carboxy-(5-indanylmethyl)]-s-hydrindacen (**21 b**) $C_{23}H_{24}O_2$ (332.5)

Darstellung aus **19 b** analog der Darstellung von **21 a**. Fp.: 206–208° (Benzol); MS (m/e): 332 (26.5%, M^+), 176 (32.6, M-C₁₂H₁₂ = Indacen), 156 (100, C₁₂H₁₂).

Methylester von **21 b** (= **22 b**) $C_{24}H_{26}O_2$ (346.5)

Darstellung aus **20b**; vgl. **22a**. Fp.: 101–104° (CH₃OH); MS (m/e): 346 (34.8%, M^+), 190 (98.5, M-C₁₂H₁₂), 156 (86.1, C₁₂H₁₂), 131 (100, 5-Indanylmethyl).

3,3'-(2,2'-Spirobiindan-5,5'-yl)-diprop-2-ensäure (**28 b**) $C_{23}H_{20}O_4$ (360.4)

28 b wurde dargestellt durch Reaktion von **28 a** [2 b] mit Malonsäure (vgl. [2 e]). Ausb.: 95%; Fp.: 270° (Zers.).

Dimethylester von **28 b** (= **28 c**) $C_{25}H_{24}O_4$ (388.4)

Durch übliche Veresterung von **28 b** mit CH_2N_2 dargestellt. Ausb.: 90% nach Krist.; Fp.: 172–173° (Benzol); MS (*m*/e): 388 (27.7%, M^+).

3,3'-(2,2'-Spirobiindan-5,5'-yl)-dipropansäuredimethylester (**28 d**) C₂₅H₂₈O₄ (392.5)

28 d wurde dargestellt durch katalytische Reduktion mit Pd/C in Dioxan von **28 c** bei einem geringen Wasserstoffüberdruck in der *Parr*-Apparatur. Fp.: 76–79° (CH₃OH); Ausb.: 97%.

3,3'-(2,2'-Spirobiindan-5,5'-yl)-dipropansäure (**28 e**) C₂₃H₂₄O₄ (364.4)

20 mmol des Diesters **28 d** wurden mit 80 mmol KOH in methanolischer Lösung 4 h erhitzt. Nach Entfernen des Lösungsmittels wurde mit H_3PO_4 versetzt, der Niederschlag abfiltriert und getrocknet. Ausb.: 93%; Fp.: 210–215 (Zers.).

2,2'-Spirobi-(s-hydrindacen)-5,5'-dion (29 a) C₂₃H₂₄O₂ (332.5)

28 e wurde mit der 10–15 fachen Menge an *PPS* versetzt und bei einer Badtemperatur von 80–90° über 6 h gerührt. Die weitere Aufarbeitung siehe [2].

654

Das Rohprodukt wurde in der Kugelrohrapparatur destilliert (Kp._{0.001}: ca. 210°) und lieferte ein Isomerengemisch von **29** zu 94%. Mittels Gaschromatographie wurde die Zusammensetzung bestimmt: **29 a** 59%, **29 b** 38% und **29 c** 3%. Zur Charakterisierung wurde das Isomerengemisch durch fraktionierte Kristallisation in 3 Anteile aufgeteilt und auf diese Weise einmal **29 b** und **29 c** und **29 a** angereichert. Durch 4maliges Entwickeln auf präparativen Kieselgelplatten (Laufmittel Benzol) und Zonenschneiden konnten **29 a** und **29 b** rein erhalten werden.

29 a: Fp.: 196—199° (CH₃OH). **29 b**: Fp.: 179—183° (CH₃OH).

2,2'-Spirobi-(s-hydrindacen) (35) C₂₃H₂₄ (300.5)

Dieser Kohlenwasserstoff konnte quantitativ durch katalytische Hydrierung mit Pd/C sowohl von **11 a** als auch **29 a** in einem Dioxan/2-*Pr*OH-Gemisch bei einem Druck von 4—5 atm und einer Reaktionszeit von 15 h erhalten werden. Kp._{0.001}: ca. 160° (Subl.); 197—198° (CH₃OH-Benzol).

2,2'-Spirobiindan-5-carbaldehyd (30 a) $C_{18}H_{16}O$ (248.3)

Darstellung aus 5-Hydroxymethyl-2,2'-spirobiindan [2b] durch Oxidation mit *PCC* (vgl. Darstellung von **4h**). Kp._{0.01}: 160° (Kugelrohr); Ausb.: 89%; Fp.: 87–90°.

3-(2,2'-Spirobiindan-5-yl)-prop-2-ensäure (30 b) $C_{20}H_{18}O_2$ (290.4)

Darstellung aus **30 a** nach *Knoevenagel-Doebner* (vgl. **28 b**). Ausb.: 97%; Fp.: 190–195° (Benzol).

Methylester von **30 b** (= **30 c**) $C_{21}H_{20}O_2$ (304.4)

Darstellung aus **30 b** durch Behandeln mit CH_2N_2 . Fp.: 123—125° (CH_3OH); Ausb.: 70% nach Kristallisation.

3-(2,2'-Spirobiindan-5-yl)-propansäure (**30** e) C₂₀H₂₀O₂ (292.4)

Darstellung durch katalytische Hydrierung von **30** b mit Pd/C in Dioxan bei einer Reaktionszeit von 8 h. Ausb.: 97%; Fp.: 140—143° (CH₃OH).

Methylester von 30 e (= 30 d) $C_{21}H_{22}O_2$ (306.4)

30 d wurde erhalten entweder durch Veresterung von **30 e** mit CH_2N_2 (Ausb.: 98%) oder durch katalytische Hydrierung von **30 c** (Ausb.: 97%). Fp.: 72–75°.

Spiro-(s-hydrindacen-2,2'-indan)-5-on (**31 a**) $C_{20}H_{18}O$ (274.4)

30 e wurde in der 10—15 fachen Menge *PPS* suspendiert und bei einer Badtemperatur von 80° 4 h gerührt, anschließend bei 90° 12 h und zum Schluß 4 h bei 110°. Die Aufarbeitung erfolgte in der üblichen Weise.

Nach Kugelrohrdestillation ($\overline{K}p_{\cdot 0.001}$: ca. 200°) wurde das Isomerengemisch zu fast 100% erhalten. Das Isomerenverhältnis wurde durch NMR-Spektroskopie bestimmt. **31 a** zu **31 b** = 77 zu 23. Die Isolierung von **31 a** erfolgte durch fraktionierte Kristallisation aus *PE*; Fp.: 144–147°. **31 b**: Isolierung durch fraktionierte Kristallisation der Mutterlaugen von **31 a** mit CH₃OH; Fp.: 166–170°.

H. K. Neudeck:

Darstellung von 31 über das Säurechlorid von 30 e

2 mmol Säure wurden mit überschüssigem $SOCl_2$ 3 h gekocht. Nach Entfernung des Lösungsmittels wurde die Substanz in Benzol aufgenommen. Zur siedenden Lösung wurden über 0.5 h 2.5 mmol (0.3 ml) $SnCl_4$ zugetropft. Nach weiteren 2 h wurde mit Eis-HCl hydrolysiert und extrahiert. Die organische Phase wurde nochmals mit verdünnter HCl gewaschen. Nach Neutralwaschen und Trocknen (MgSO₄) wurde das Lösungsmittel entfernt und das Gemisch im Kugelrohr destilliert. Ausb.: 98%; Isomerenverhältnis **31 a** zu **31 b** = 79 zu 21.

Spiro-[s-hydrindacen-2,2'-(5'-acetylindan)]-5-on (32) C₂₂H₂₀O₂ (316.4)

Zu 30 g (0.225 mol) AlC₃ in 250 ml CH_2Cl_2 wurden 13.9 g (0.136 mol) Acetanhydrid getropft. Nach Bildung des Komplexes wurden 1 h lang 12.3 g (0.045 mol) **31 a** in CH_2Cl_2 zugegeben. Nach 10 h wurde in üblicher Weise aufgearbeitet. Kp._{0.001}: ca. 250° (Kugelrohr); Fp.: 126–130° (CH₃OH); Ausb.: 81%.

Spiro-(s-hydrindacen-2,2'-indan) (33) $C_{20}H_{20}$ (260.4)

Darstellung aus **31 a** durch katalytische Hydrierung in der *Parr*-Apparatur. Lösungsmittel: Dioxan/2-*Pr*OH; Druck: 4—5 atm; Zeitbedarf: 20 h. Fp.: 119— 121° (CH₃OH/Benzol); Ausb.: 94%.

Acetylierung von 33

Zu 1.3 g (5 mmol) **33**, gelöst in 40 ml CH₂Cl₂, wurde tropfenweise (3–4 h) der *Friedel-Crafts*-Komplex aus 0.7 g (7 mmol) Acetanhydrid und 1.33 g (10 mmol) AlCl₃ in 30 ml CH₂Cl₂ zugesetzt. Nach Reaktion über Nacht wurde aufgearbeitet. Das zu 89% erhaltene Isomerengemisch wurde chromatographisch (Laufmittel Benzol) getrennt.

4-Acetyl-spiro-(s-hydrindacen-2,2'-indan) (34 a) $C_{22}H_{22}O$ (302.4)

Zu 56% im Isomerengemisch enthalten; Öl.

5'-Acetyl-spiro-(s-hydrindacen-2,2'-indan) (34b) $C_{22}H_{22}O$ (302.4)

Zu 44% im Isomerengemisch vorliegend; Fp.: 120-124°.

Literatur

- [1] 13. Mitt: Neudeck H, Schlögl K, Tscheplak H (1985) Monatsh Chem 116: 789
- [2] a) Neudeck H, Schlögl K, Tscheplak H (1984) Monatsh Chem 115: 661; b) Neudeck H, Schlögl K (1977) Chem Ber 110: 2624; c) Neudeck H, Schlögl K (1979) Monatsh Chem 110: 541; d) Neudeck H, Richter B, Schlögl K (1979) Monatsh Chem 110: 931; e) Neudeck H, Schlögl K (1981) Monatsh Chem 112: 801
- [3] Haslinger E, Neudeck H, Robien W (1981) Monatsh Chem 112: 405
- [4] Patwardhan SA (1969) Indian J Chem 7: 105
- [5] Arnold RT (1945) J Am Chem Soc 67: 1265
- [6] King LA (1944) J Am Chem Soc 66: 894
- [7] Ruggli P, Bücheler P (1947) Helv Chim Acta 30: 2048
- [8] Dauben WG, Jiu J (1954) J Am Chem Soc 76: 4426

- [9] Arnold RT, Murai K, Dodson RM (1950) J Am Chem Soc 72: 4193
- [10] Hunsberger IM, Lednicer D, Gutowsky HS, Bunker DL, Taussig P (1955) J Am Chem Soc 77: 2466
- [11] Wightman RH, Laycock DE, Avdovich HW (1978) J Org Chem 43: 2167
- [12] Corey EJ, Suggs JW (1975) Tetrahedron Lett 31: 2647
- [13] Isabelle EI, Wightman RH, Avdovich HW, Laycock DE (1980) Can J Chem 58:1344
- [14] Arnold RT, Rondestvedt E (1945) J Am Chem Soc 67: 1265
- [15] Arnold RT, Barnes RA (1944) J Am Chem Soc 66: 960 [16] Granger R, Orzalesi H, Muratelle A (1961) Compt Rend 252: 1971
- [17] Woodward RB, Hoye TR (1977) J Am Chem Soc 99: 8007
- [18] Rapoport H, Smolinsky G (1960) J Am Chem Soc 82: 1171